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Loschmidt echo and Lyapunov exponent in a quantum disordered system
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We investigate the sensitivity of a disordered system with diffractive scatterers to a weak external pertur-
bation. Specifically, we calculate the fidelityM (t) ~also called the Loschmidt echo! characterizing a return
probability after a propagation for a timet followed by a backward propagation governed by a slightly
perturbed Hamiltonian. For short-range scatterers, we perform a diagrammatic calculation showing that the
fidelity decays first exponentially according to the golden rule, and then follows a power law governed by the
diffusive dynamics. For long-range disorder~when the diffractive scattering is of small-angle character!, an
intermediate regime emerges where the diagrammatics is not applicable. Using the path-integral technique, we
derive a kinetic equation and show thatM (t) decays exponentially with a rate governed by the classical
Lyapunov exponent.
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I. INTRODUCTION

Quantum manifestations of the classical chaotic dynam
represent a central issue for the field of quantum chaos
characterize quantitatively the stability of quantum motio
Peres@1,2# proposed to consider the fidelity

M ~ t !5 z^cuexp~ iĤ 8t !exp~2 iĤ t !uc& z2, ~1!

where Ĥ8 differs by a small perturbation from the Hami
tonianĤ of the system under consideration anduc& is some
original state~wave packet!. The quantity~1! is the probabil-
ity to return into the stateuc& after propagation for a timet
governed by the HamiltonianĤ followed by a backward
propagation with a slightly perturbed HamiltonianĤ8. Re-
cently, Jalabert and Pastawski@3# argued that for a system
whose classical counterpart is chaotic the fidelity~1! will
decay exponentially with time, with the rate given by t
classical Lyapunov exponent. Their work was motivated
measurements of a spin-echo decoherence rate in nu
magnetic resonance experiments@4#, and they gave a nam
‘‘quantum Loschmidt echo’’ to the overlap~1!. The paper@3#
triggered a considerable outbreak of research activity
voted to the sensitivity of quantum chaotic systems to ex
nal perturbations. In a number of subsequent publicati
@5–18#, the Loschmidt echo was studied~predominantly by
means of numerical simulations! for a variety of classically
chaotic systems and its relation to decoherence problems
discussed. These numerical works have confirmed the
prediction of Ref.@3# that in an appropriate parameter ran
the decay rate of the Loschmidt echo is governed by
classical Lyapunov exponent.

*Also at A.F. Ioffe Physical-Technical Institute, 194021 St. P
tersburg, Russia.

†Also at Petersburg Nuclear Physics Institute, 188350 St. Pe
burg, Russia.
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In the present paper, we study the Loschmidt echo~1! in a
different context, namely, that of aquantum-disorderedsys-
tem. Specifically, we consider a particle moving in a we
quantumrandom potential. The word ‘‘quantum’’ means he
that the scattering on this disorder is of diffractive natu
For a Gaussian random potential assumed here, thi
equivalent to the condition

d! l s , ~2!

whered is the disorder correlation length andl s is the quan-
tum mean free path. This situation should be contrasted w
the opposite case of a classical disorder, for which
disorder-induced contribution to the action on a distance;d
is much larger than\, and the representation of propagato
in terms of a sum over classical orbits~as used, e.g., in Ref
@3#! is justified. On the other hand, the standard theoret
tool for the quantum-disorder regime is the impurity diagra
technique. It is therefore natural to attempt to apply the d
grammatics to the Loschmidt echo problem.

We show that indeed the diagrammatic technique can
used to calculate the fidelity for short times~where it is given
simply by the golden-rule formula!, as well as for suffi-
ciently long times~where it decays according to a power la
reflecting the diffusive character of the classical motion!. We
demonstrate, however, that for a sufficiently smooth@but still
quantum as defined by Eq.~2!# disorder an intermediate tim
range emerges, where the diagrammatic method bre
down. Using the path-integral approach, we calculate
Loschmidt echo in this regime and find that it does show
decay governed by the classical Lyapunov exponent, wh
is highly nontrivial in view of the diffractive character o
disorder.

The rest of the paper is organized as follows. In Sec.
we consider the case of a short-range disorder (d!l0, where
l0 is the electron wavelength! when the diagrammatic cal
culation works in the whole range of times. We identify di
grams corresponding to the short-time~golden-rule! and the
long-time ~diffusion-induced power law! behavior of the fi-
delity and evaluate them. Section III, which is the central o
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for the paper, is devoted to the case of a long-range ran
potential (d@l0) when the scattering is of small-angle cha
acter. Our conclusions are summarized in Sec. IV. In part
lar, we discuss there a connection between the Loschm
echo problem and a recent activity@19–23# devoted to quan-
tum interference effects in the regime of quantum chaos

II. LOSCHMIDT ECHO FOR THE SHORT-RANGE
POTENTIAL

As discussed in Sec. I, we consider a model of the part
moving in a random potential inducing a quantum~diffrac-
tive! scattering. We will assume the limit of an infinite sy
tem size. The HamiltoniansH andH8 describing the forward
and the backward propagation in Eq.~1! correspond to two
slightly different potentials

Ĥ5
p̂2

2m
1U; Ĥ85

p̂2

2m
1U8, ~3!

wherem is a mass of the particle. In this section, we stu
the case of a short-range disorder, with the correlation len
d!l0, which is essentially equivalent to ad-correlated
~white-noise! random potential. Thus, we have the followin
expressions for the correlators:

^U~r1!U~r2!&5^U8~r1!U8~r2!&5
1

2pnt
d~r12r2!, ~4!

where t is the mean free time~to simplify notations, we
assume it to be exactly the same forU and U8) and n is a
density of states at the Fermi energy. The difference betw
the potentialsdU5U82U is characterized by another tim
scalet̃,

^dU~r1!dU~r2!&5
1

pnt̃
d~r12r2!. ~5!

Clearly, we want to study the effect of a weak perturbat
dU!U or, in the other words,t̃@t. Finally, we take the
initial stateuc& in the form of a Gaussian wave packet

c~r !5S 1

ps2D D/4

expF ip0•r2
r2

2s2G , ~6!

wheres@l052p/p0 is a width of the packet andD is a
number of space dimensions~we set\51 throughout the
paper!.

To translate~1! into the diagrammatic language, we re
resent the ensemble-averaged fidelity as an average pro
of four Green’s functions

M ~ t !5E dr1•••dr6^c~r1!GR~r1 ,r2 ;t !

3GA8~r2 ,r3 ;2t !c* ~r3!c~r4!GR8~r4 ,r5 ;t !

3GA~r5 ,r6 ;2t !c* ~r6!&, ~7!
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GR,A5E dE

2p
~E2Ĥ6 i0!21e2 iEt,

GR8,A85E dE

2p
~E2Ĥ86 i0!21e2 iEt. ~8!

The diagrams are then obtained by connecting four lines
resenting the Green’s functions in Eq.~7! via the diffusion
ladders. At sufficiently short times the leading contribution
given by the simplest diagram shown in Fig. 1.

The solid lines in Fig. 1 correspond to the impurit
averaged Green’s functions

ḠR,A~e,p!5ḠR8,A8~e,p!5
1

e2ep6 i /2t
, ~9!

with ep5p2/2m, and the shaded box represents the diffus
~see Fig. 2!,

P̃~Q,v!5
1

2pnt2~DQ22 iv11/t̃ !
, ~10!

where D5v0
2t/D is the diffusion coefficient andv0

5p0 /m. Note that this diffuson has a nonzero ‘‘mass’’ 1/t̃,
since it represents an averaged product of two Green’s fu
tions in different potentialŝGRGA8&. We will only need this
diffuson for zero momentumQ and integrated with two
Green’s functions, therefore it is convenient to introduce

FIG. 1. Diagram determining the short-time~golden-rule! be-
havior of the fidelity.

FIG. 2. Dyson equation for the ‘‘massive diffuson.’’ The dash
line corresponds to the correlator^UU8&.
7-2
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G̃~v!5E dp

~2p!D
GRS e1

v

2
,pDGA8S e2

v

2
,pD P̃~0,v!

5
1

t~2 iv11/t̃ !
. ~11!

To shorten notations, we will also denoteḠc
R,R8(e,p)

5c(p)ḠR,R8(e,p) and Ḡc
A,A8(e,p)5c* (p)ḠA,A8(e,p),

where c(p)5(4ps2)D/4e2(p2p0)2s2/2 is the wave function
in the momentum representation.

With the above definitions, the expression correspond
to the diagram Fig. 1 has the form

M ~ t !5U E dp

~2p!D

dede8

~2p!2
e2 i (e2e8)t

3Ḡc
R~e,p!G̃~e2e8!Ḡc

A8~e8,p!U2

. ~12!

After a straightforward calculation, we get the following r
sult for the fidelity:

M ~ t !5e22t/ t̃. ~13!

This is nothing but the golden-rule decay induced by
perturbation~5!.

For long timest@ t̃ the contribution~13! becomes expo-
nentially small in view of the massive character of the diff
sons~10!. The long-time behavior of the fidelity is, howeve
determined by a different diagram shown in Fig. 3, with tw
massive diffusons‘‘colliding’’ and transforming into two con
ventional, massless diffusons~Fig. 4!,

P~Q,v!5
1

2pnt2

1

DQ22 iv
. ~14!

FIG. 3. Diagram determining the long-time diffusive asympt
ics of M (t).

FIG. 4. Dyson equation for the conventional diffusonP(Q,v).
The dotted line corresponds to the correlator^UU&5^U8U8&.
05621
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The diffuson ‘‘collision’’ vertex, conventionally termed
the Hikami box, is given by a sum of diagrams shown in F
5, yielding

x~Q,e2e8!5
4pnt2

t̃

1

~e2e8!21~1/t!2
. ~15!

Note the unconventional form of the expression for t
Hikami box: due to^UU8&Þ^UU&, the diagrams in Fig. 5
do not cancel when all diffuson momenta and frequencies
equal to zero. Further, we neglected the momentum and
quencies of massless diffusons in Eq.~15!; the corresponding
terms will be smaller by a factort̃/t!1.

Combining everything, we thus get the following expre
sion corresponding to the diagram in Fig. 3:

M ~ t !5E dpdp8dQ

~2p!3D E dede8dv1dv2

~2p!4
e2 i (v11v2)t

3Ḡc
RS p2

Q

2
,e1

v1

2 D Ḡc
AS p1

Q

2
,e2

v1

2 D
3P~Q,v1!x~Q,e2e8!uG̃~e2e8!u2P~Q,v2!

3Ḡc
A8S p82

Q

2
,e82

v2

2 D Ḡc
R8S p81

Q

2
,e81

v2

2 D .

~16!

Performing all the energy integrations, we get the followi
result:

M ~ t !5E dpdp8dQ

~2p!3D
e22DQ2te2Q2s2/2e2(p2p0)2s2

3e2(p82p0)2s2 ~4ps2!D

pnt

1

~ep2ep8!
21

1

t2

.

~17!

Before writing down the final result, we should be mo
specific about the widths of the original wave packet. When
it is large compared to the mean free path,s@v0t, the char-
acteristic deviationsup2p0u, up82p0u are of the order of 1/s
due to Gaussian factors, and we can setupu5up8u in the last
factor in Eq.~17!. In the opposite cases!v0t, the differ-
enceupu2up8u is of the order of 1/(v0t)!1/s and can be
neglected in the above Gaussian factors. Thus, we have

FIG. 5. Diffuson ‘‘collision’’ vertex ~Hikami box!.
7-3
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M ~ t !5
v0t

2ps

G~D/2!

~p0s!D21 S 2s2

4Dt1s2D D/2

, s@v0t,

~18!

M ~ t !5
1

2A2p

G~D/2!

~p0s!D21 S s2

2Dt D
D/2

, s!v0t, ~19!

whereG(x) is the Euler Gamma function. Remarkably, th
large-t behavior of the Loschmidt echo is independent oft̃,
i.e., of the perturbation strength.

Therefore, the long-time asymptotic behavior of the fid
ity is a power-law decay governed by the diffusion, wi
M (t) proportional to the inverse diffusion volumeVdiff
5(Dt)D/2. Clearly, this result obtained from the diffuson di
gram technique is not specific for the white-noise disor
considered in this section but rather yields a generic form
the long-t behavior ofM (t) in diffusive systems. Comparing
the results~18! and~19! with contribution from~13!, one can
determine the timet* of crossover between the exponent
and the power-law regimes, which is larger thant̃ by a loga-
rithmic factor. In particular, for a two-dimensional syste
with s, l , we havet* 5( t̃/2)ln(p0Dt̃/s). The behavior of
M (t) for the case of a short-range potential studied in t
section is illustrated schematically in Fig. 6.

We will now show that the result~19! can be obtained
from classical arguments. Let us consider the classical fi
ity introduced in Refs.@8,13,15,17# and defined as an overla
of two classical phase-space distribution functions

M cl~ t !5E n~p,r ,t !n8~p,r ,t !
dpdr

~2p!D
. ~20!

Here, n(p,r ,t) is a distribution function obtained from th
initial distributionn(p,r ,0) by the action of the classical evo
lution operator corresponding to the HamiltonianĤ and
n8(p,r ,t) is obtained by the evolution operator correspon
ing to the slightly perturbed HamiltonianĤ8. This quantity
indeed possesses the properties of fidelity if the initial dis
bution is derived from a Wigner functionWc of a pure quan-
tum mechanical state,n(p,r ,0)5Wc(p,r ,0), implying, in
particular,M cl(0)5*n2(p,r ,0)dpdr /(2p)D51. For the ini-
tial state~6!, the corresponding Wigner function is

FIG. 6. Schematic representation of the time evolution of
Loschmidt echoM (t) for a white-noise disorder on a log-log plo
A, golden-rule exponential decay~13!; B, diffusive power-law de-
cay ~18! and ~19!.
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Wc~p,r !52De2r2/s2
e(p2p0)2s2

. ~21!

The classical evolution of the coordinate part ofnc(p,r ,t)
is described by the diffusion propagator

P~r1 ,r2 ,t !5
1

~4pDt !D/2
expS 2

~r12r2!2

4Dt D . ~22!

The final momentum distribution is uniform over the m
mentum direction, while the distribution ofupu is determined
by the energy conservation. Thus, we have

nc~p,r ,t !5
1

~4pDt !D/2
expS 2

r2

4Dt D
3

~4p!(D21)/2G~D/2!

p0
D21

exp@2~ upu2p0!2s2#,

~23!

where we assumed that the timet is sufficiently large,s2

!Dt. The difference between the HamiltoniansĤ andĤ8 is
insignificant for the diffusive dynamics, so thatn8(p,r ,t) is
given by the same formula~23!. Inserting the expression~23!
for n andn8 into Eq. ~20!, we get

M cl~ t !5E n2~p,r ,t !
dpdr

~2p!D

5
1

2A2p

G~D/2!

~p0s!D21 S s2

2Dt D
D/2

, ~24!

which is identical to the result~19! of the quantum mechani
cal calculation.

The result ~19! differs from Eq. ~24! by the prefactor
v0t/s. This can be understood if we take into account th
for s@ l 5v0t the width of the distribution ofupu is deter-
mined by the quantum uncertainty of the momentumdupu
; l 21 rather than bys21 as in the classical formula~23!.

We see that the long-time behavior of the classical~20!
and quantum~1! fidelity is essentially the same. This agre
with the results of numerical study of a quantum chao
system~the sawtooth map! in Ref. @8#.

In low-dimensional systems,D<2, the behavior of the
quantum fidelity is affected at very long times by the qua
tum localization effects~which have been neglected in ou
considerations!. These effects will lead to a saturation of th
quantum fidelity at the timet loc;L loc

2 /D, where L loc is a
localization length. Specifically, for a quasi-one-dimensio
system t loc;n2D and for a two-dimensional systemt loc

;te4p2nD.
It is worth mentioning that our diagrammatic calculatio

bears a certain similarity to earlier studies of intensity flu
tuations and correlations for waves propagating in rand
media@24–26#. In particular, sensitivity of transport quant
ties to a small change of the impurity potential~e.g., due to a
displacement of a single-scattering center! has been investi-
gated @27,24#. However, the Loschmidt echo is essentia

e
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LOSCHMIDT ECHO AND LYAPUNOV EXPONENT IN A . . . PHYSICAL REVIEW E67, 056217 ~2003!
different from the quantities studied in these papers sinc
involves propagation in two different potentialsU, U8 al-
ready before the ensemble averaging. Formally, this co
sponds to switching between the Green’s functionsG andG8
in external vertices~see Figs. 1 and 3!.

III. LOSCHMIDT ECHO FOR THE LONG-RANGE
POTENTIAL

After having understood the behavior of the fidelity in
white-noise disorder, we turn to the case of our main inter
a long-range potential with a correlation lengthd@l0. For
this kind of potential, the characteristic angle of diffractio
for each scattering event is small,df;l0 /d, so that many
scattering events are needed to change strongly the vel
direction. As a result, the motion in such a disorder is ch
acterized by two relaxation times. The first one is the qu
tum ~or, in another terminology, single-particle! relaxation
time ts , which is the mean time between scattering eve
This time determines the decay rate of the averaged Gre
function ^GR(r ,t)&5G0

R(r ,t)e2t/2ts. The second one, th
momentum~or, transport! relaxation timet tr sets the time
scale on which the velocity direction changes by an angle
the order ofp. It is parametrically larger,t tr;(d/l0)2ts .
The transport time determines, in particular, the diffus
coefficientD5v0

2t tr /D.
The condition~2! implies that in the diagrammatic ap

proach the leading contribution is given by diagrams w
noncrossing impurity lines. In particular,ts is determined by
the Born-approximation self-energy diagram,t tr is obtained
by taking into account the ladder-type vertex correction, a
the diffusion propagator can be calculated by solving
05621
it

e-

t,

ity
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f

d
e

equation corresponding to the sum of the ladder diagra
@28#. Furthermore, even in the ballistic range of frequen
and momentaql tr.1, vt tr.1, the average product of two
Green’s functionŝGRGA& is determined by a sum of ladde
diagrams, the ‘‘ballistic diffuson.’’ One might thus expe
that the diagrammatic calculation of the preceding sect
can be generalized to the case of a long-range disorder
deed, both the golden-rule short-time behavior correspond
to Fig. 1 and the long-time diffusion power-law asymptoti
determined by the diagram of Fig. 3 do retain their valid
for a long-range disorder. However, as we demonstrate
low, an intermediate time range emerges, where the diagr
matic approach is not applicable. The reason for this i
necessity to average a product of four Green’s functions
scribing four electronic trajectories propagating close to e
other. As was shown in Ref.@23#, in a certain time range
~specified below! these four Green’s functions do not d
couple into two~ballistic! diffusons, but rather are couple
all together by impurity correlators into a more complicat
object, a ‘‘four-diffuson.’’ In view of the failure of the
ballistic-diffuson diagrammatics, we will use the pat
integral approach developed in Refs.@29,23#. For simplicity,
we consider a two-dimensional system.

We begin by defining the disorder correlation functio
@replacing the white-noise formulas~4! and ~5!#

^U~r !U~r1!&5^U8~r !U8~r1!&5W~ ur2r1u!,

^dU~r !dU~r1!&52dW~ ur2r1u!. ~25!

Introducing the Feynman path-integral representation
averaging over the disorder, we rewrite the product of fo
Green’s functions in Eq.~7! as
f

^GR~R1 ,R2 ,T!GA8~R2 ,R3 ,2T!GR8~R4 ,R5 ,T!GA~R5 ,R6 ,2T!&

5E
r1(0)5R1

r1(T)5R2E
r3(0)5R2

r3(T)5R3E
r2(0)5R4

r2(T)5R5E
r4(0)5R5

r4(T)5R6

)
i 51

4

Dr i exp@ iSkin2SW#, ~26!

Skin5
m

2 E0

T

dt~ ṙ1
21 ṙ2

22 ṙ3
22 ṙ4

2!,

SW5
1

2
~S111S221S331S44!1S121S342S132S142S232S242dS122dS341dS131dS24,

Si j 5E
0

TE
0

T

W„r i~ t !2r j~ t8!…dtdt8,

dSi j 5E
0

TE
0

T

dW„r i~ t !2r j~ t8!…dtdt8, ~27!

where the pathsr1 ,r2 correspond to the retarded andr3 ,r4 to the advanced Green’s functions. The path integral~26! is similar
to the one evaluated in Ref.@23#, a difference being in boundary conditions and in the additional termsdSi j in the action
induced by the perturbationdU. As in Ref. @23#, it is useful to perform the change of variables, introducingR15(r11r2
1r31r4)/4, R25(r11r22r32r4), r15(r12r21r32r4)/2, r25(r12r22r31r4)/2. The boundary conditions in terms o
the new variables are as follows. Att5T, we haveR2(T)50 andr2(T)50, while the integration overR1(T) andr1(T) are
unrestricted. Att50 the integration overR6(0) andr6(0) is performed with the weight
7-5
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c~R1!c* ~R3!c~R4!c* ~R6!5S 1

ps2D 2

expH 2
4R1~0!21R2

2 ~0!/41r1~0!21r2~0!2

2s2
1 ip0R2~0!J . ~28!
ar

e
io

or
ge

s

way

r-

i-

.

The kinetic part of the action reads in the transformed v
ables as

Skin5mE
0

T

dt~ ṙ1 ṙ21Ṙ1Ṙ2!. ~29!

As was shown in Ref.@23#, the pairs of variables (R1 ,R2)
and (r1 ,r2) decouple. On ballistic distances! l tr , the inte-
gral over the first pair is essentially of the free-particle typ
and its saddle-point yields the classical equation of mot
for the ‘‘center of mass’’ coordinateR1 ,

R1~ t !5R1~0!1@R1~T!2R1~0!#
t

T
. ~30!

After integrating outR1 ,R2 , the action~29! is reduced to
the form

Skin5m
R1~T!2R1~0!

2T
@R2~T!2R2~0!#1mE

0

T

dtṙ1 ṙ2 .

~31!

Since we are interested in the ballistic scales (! l tr), it is
convenient to splitR2 ,r1 ,r2 into components paralleluu
and perpendicular' to the direction of the motionṘ1 . Then
the disorder-induced part of the actionSW depends only on
the transverse componentsR2' and r6' , which we will
denoteY2 andr6 , respectively,

SW.E
0

T

U„r2~ t !,r1~ t !…dt

22E
0

T

dtY2
2 ~ t !$G„r2~ t !…2dG„r2~ t !…1G„r1~ t !…%,

~32!

where

U5U01dU,

U052@F~r1!1F~r2!#2F~r11r2!2F~r12r2!,

dU522dF~r2!1dF~r11r2!1dF~r12r2!, ~33!

and we have introduced the functions

F~y![E
0

`dx

v0
@W~x,0!2W~x,y!#,

dF~y![E
0

`dx

v0
@dW~x,0!2dW~x,y!#, ~34!
05621
i-

,
n

G~y![E
0

`dx

v0

]2

]y2 W~x,y!,

dG~y![E
0

`dx

v0

]2

]y2 dW~x,y!. ~35!

Since the correlation functionsW(r ), dW(r ) decay on the
scaled, the functionsF, G, dF, anddG have the following
asymptotic behavior: F(y!d).2G(0)y2/2, F(y@d)
.ts

21 , G(0)52m2v0
2/t tr , and G(y@d)→0, and analo-

gously dF(y!d).2dG(0)y2/2, dF(y@d). t̃s
21 , dG(0)

52m2v0
2/ t̃ tr , dG(y@d)→0. Here, the timests andt tr are

defined according to

1

ts
5

2

v0
E

0

`

W~r !dr, ~36!

1

t tr
52

1

m2v0
3 E0

` dr

r

dW~r !

dr
. ~37!

As shown in Ref.@29#, these are exactly the expressions f
the single particle and the transport times in a long-ran
disorder. The timest̃s and t̃ tr are defined by the equation
analogous to Eqs.~36! and ~37! but with a substitutionW
→dW.

Taking into account the boundary conditions~28! and in-
tegrating out the variablesR6 , we get the following expres-
sion for the fidelity:

M ~T!5E dr1dr2

A2ps2
e2 ~r2

2
1r1

2
!/2s2

g~r1 ,r2 ;T!.

~38!

The functiong entering~38! is determined by ther6 part of
the path integral, which can be reduced in the standard
to a differential equation:

S ]

]t
2

i

m

]2

]r1]r2
1U~r1 ,r2! Dg~r1 ,r2 ,t !5d~ t !d~r2!.

~39!

The left-hand-side of this equation reduces to that of Eq.~36!
in Ref. @23# if the forward and backward evolution are pe
formed in the same potential,dU50 ~the right-hand-side dif-
fers from Ref. @23# because of different boundary cond
tions!. The presence ofdU @which enters the ‘‘potential
energy’’ U, see Eq.~33!# in Eq. ~39! is crucially important:
otherwise the solution would be simplyg(r1 ,r2 ,t)
5d(r2) for any t.0, since the boundary condition in Eq
~39! is independent ofr1 andU0(r1,0)50. After a substi-
tution into Eq.~38!, this would lead toM (t)51, which is
the correct result in the absence of perturbation.
7-6
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We have therefore reduced the problem of calculation
the Loschmidt echo in the ballistic time range to a solution
the kinetic equation~39!. Let us consider the time evolutio
of the solution of Eq.~39!. The initial value att→0 is g
5d(r2), and as explained above, the time evolution is i
tially determined by the termdU that induces ar1 depen-
dence of the solution. As a result, the distributiong becomes
quickly suppressed atr1*d because

dU~r1,0!.
2

t̃s

, r1@d. ~40!

Thus, forr1@d Eq. ~39! reduces to

]

]t
g1

2

t̃s

g50, ~41!

which gives an exponential decay

g.H d~r2!, r1!d

d~r2!e22t/ t̃s, r1@d.
~42!

Therefore, fort@ t̃s the functiong remains essentially non
vanishing only in the regionr1 ,r2!d. In this region, we
can expandU up to the leading terms inr1 and r2 and
rewrite Eq.~39! in the form

S ]

]t
2

i

m

]2

]r1]r2
1

m2

tL
3

r1
2 r2

2 1
2m2v0

2

t̃ tr

r1
2 D g50. ~43!

We have introduced here a time scale

tL5F 3

2m2v0
E

0

`dr

r

d

dr S 1

r

dW~r !

dr D G21/3

;t trS d

l tr
D 2/3

.

~44!

As discussed below,tL is equal~up to a numerical coeffi-
cient! to the inverse Lyapunov exponent in the correspond
classical problem, and we will call it the Lyapunov time.

At the early stage of the evolution, characteristic values
r2 are small, and ther1

2 r2
2 term in Eq.~43! is small com-

pared to ther2
2 term. More specifically, att;t̃s , we have

r2; l̃ s /(p0d), so that the condition for neglecting the qua
tic term in this time range isl L@ l̃ s , wherel L5v0tL is the
Lyapunov length. We will assume in the sequel that this c
dition is fulfilled @30#. Thus, Eq.~39! reduces to

S ]

]t
2

i

m

]2

]r1]r2
1

2m2v0
2

t̃ tr

r1
2 D g50. ~45!

Performing further a Fourier transformationr1

→ i (mv0)21]/]f, ]/]r1→ imv0f, we cast Eq.~39! into
the following form:

S ]

]t
1v0f

]

]r2
2

2

t̃ tr

]2

]f2D g50. ~46!
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Remarkably, Eq.~46! has a meaning of the Boltzmann k
netic equation for the phase-space distribution function
scribing the motion in the transverse direction characteri
by the coordinater2 , with v0f playing the role of the cor-
responding velocity. This clarifies the meaning off ~and
explains the notation!; it is the angle the velocity vecto
makes with theuu axis. ~We remind the reader that we ar
considering ballistic time scales, so thatf!1.) The last
term in Eq. ~46! plays the role of a collision integral an
describes a diffusion process for the velocity angle. The
lution of this equation is a Gaussian packet

g~f,r2!5
A3t̃

2mv0
2t2

expH S 3fr2

v0t
2

3r2
2

~v0t !2
2f2D t̃ tr

2tJ .

Transforming back to the variabler1 , we get

g~r1 ,r2!5
1

ApS2

expH 2
r2

2

S2
2

2
r1

2

S1
2

12iA3
r1r2

S1S2
J ,

where

S2~ t !5
2v0t

A3
S 2t

t̃ tr
D 1/2

,

S1~ t !5
2

mv0
S t̃ tr

2t
D 1/2

. ~47!

For the phase-space distribution functiong(f,r2 ,) the
quantitiesS2 andS1

21 play the role of widths of the distri-
bution with respect to the coordinater2 and the momentum
mv0f, respectively.

To simplify calculations, we will neglect the cross corr
lations betweenr1 and r2 @this will only influence a nu-
merical prefactor inM (t), which is of minor importance
here# and assume thatg has the form

g~r1 ,r2!5
1

ApS2

expH 2
r2

2

S2
2

2
r1

2

S1
2 J . ~48!

We will see that this form ofg will preserve during the
further evolution of the distribution.

The characteristic values ofr2 are increasing proportion
ally to t3/2. Eventually, the neglected third~quartic! term in
Eq. ~43! becomes comparable to the fourth one. Using
result ~47! for the characteristic valueS2(t) of r2 , it is
easy to see that this happens att5tL . At t.tL the fourth
term dominates, and Eq.~43! takes the form

S ]

]t
2

i

m

]2

]r1]r2
1

m2

tL
3

r1
2 r2

2 D g50. ~49!

After the Fourier transformation fromr1 to f, the last term
takes the form2(r2

2 /v0
2tL

3)]2g/]f2 and describes a diffu-
sion process for the anglef with the diffusion coefficient
proportional to to the coordinater2 . This is exactly the
kinetic equation for the disorder-averaged distribution fun
7-7
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tion g(f,r2) of phase-space separations between two c
sical paths@19,23#. It leads to an exponential increase of t
width of the distribution functiong(r2 ,f) with a rate given
by the Lyapunov exponent;tL

21 . Thus, in this Lyapunov
regime, we have

S2~ t !.v0tLS tL

t̃ tr
D 1/2

expH c
t

tL
J ,

S1~ t !.l0S t̃ tr

tL
D 1/2

expH 2c
t

tL
J , ~50!

wherec is a numerical coefficient of the order of unity.
Since Eq. ~43! turns after the Fourier transformr1

→ i (mv0)21]/]f into a kinetic equation for the classica
distribution function, in a long-range potential the classi
fidelity ~20! behaves in the same way as the quantum one
t@ t̃s . Let us emphasize a highly nontrivial character of t
emergence of a classical kinetic equation. Indeed, we c
sider a random potential for which each scattering act is
quantum~diffractive! nature and cannot be described clas
cally. It is only after the disorder averaging that the classi
kinetics is restored.

The Lyapunov regime breaks down when the widthS2

reaches the correlation lengthd, i.e., at

tE* 5~tL /c!ln~ t̃ tr /t tr!. ~51!

This time plays a role analogous to the Ehrenfest time
only depends on classical parameters~if one assumes that th
perturbationdU is independent of\). An analogous expres
sion for the crossover time between the Lyapunov reg
and the power-law regime~discussed below! was obtained in
Ref. @13# for the classical fidelity in a different model~saw-
tooth map!.

When t.tE* , so thatr2@d, we can use another asymp
tote of the ‘‘potential’’U(r1 ,r2)ur2@d52m2v0

2r1
2 /t tr . This

leads to an equation very similar to Eq.~45! but with t̃ tr
replaced byt tr . Therefore, in analogy with Eq.~47!, we have
again a power-law dependence of the distribution widths

S2~ t !.v0tS t

t tr
D 1/2

,

S1~ t !.l0S t tr

t D 1/2

. ~52!

For times larger thantE* all the calculations can also be pe
formed using the diagrammatic technique for ballistic s
tems. This is because four trajectories, which were coup
all together into a four-diffuson by disorder correlations
the Lyapunov regime, split now in two conventional ballis
diffusons separated by a distance@d @19,23#.

Having obtained the solutiong of the kinetic equation in
all the regimes of interest, we can calculate the fidelityM (t).
Substituting Eq.~48! into Eq. ~38!, we get
05621
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M ~T!.
min„S1~T!,s…

max„S2~T!,s…
. ~53!

Thus, two additional time scales may become signific
when we consider the fidelity:ts1 , which is defined by
S1(ts1)5s andts2 defined byS2(ts2)5s. Position of
these time scales with respect to main characteristic tim
(tL , tE* , t tr) depends on the widths of the initial state. As
an example, we choosed,s, l tr . In this case,S1,s for
all times t. t̃s , so that the scalets1 does not arise, and
tE* ,ts2,t tr . The order of all characteristic scales on t
time axis is illustrated in Fig. 7.

We mention for completeness that there is one more c
acteristic timetsuu located betweents2 andt tr . At this time,
the approximation~30! of straight motion in the coordinate
R1 loses its validity. This leads to an additional fact
s/max$s,Suu% in the expression forM (t), where

S uu.vt
t

t tr
~54!

characterizes longitudinal fluctuations ofR1 . There is thus
an additional crossover inside the ballistic-diagrammatics
gime, which takes place at a timetsuu satisfying S uu(tsuu)
5s.

We are now prepared to summarize the results of
section and to give a list of all the regimes of behavior of t
fidelity. We have found as much as six essentially differe
regimes~as illustrated in Fig. 7!, one of them~the ballistic
diffusion! splits up into three subregimes with differe
power-law behavior. We list the regimes in the order th
appear as the time increases.

~1! Perfect echo regime,t! t̃s . At such short times the
perturbation is essentially irrelevant, andM (t).1.

~2! Golden-rule regime,t, t̃sln(s/d). Substituting Eq.
~42! into Eq. ~38!, we get the exponential decay

M ~ t !5e22t/ t̃s. ~55!

~3! Power-law ‘‘pre-Lyapunov inflation’’ regime,
t̃sln(s/d),t,tL . Substituting Eq.~47! into Eq. ~53!, we get

M ~ t !;
d

s
S t̃s

t
D 1/2

. ~56!

This behavior of the fidelity is related to a power-law sprea
ing of classical trajectories in this regime due to the ballis
diffusion in the perturbation potentialdU.

FIG. 7. Characteristic time scales separating various regime
the behavior of M (t). The regimes 2 ~golden rule! and 4
~Lyapunov! correspond to an exponential decay ofM (t), the re-
maining regimes to a power-law decay~see text for details!.
7-8



h

r

e

n
te

o
p
o

te
.

io
th
m

w
m
r

in
re
-

d fi-
on
n

he
e-

al
pa-

e
ov
te

e,
al;
e
on

cts

of
um

in
n
e

dif-

s-

es.
ua-
q.

ck-

-
is
is-

in-
are
om
-
an

ly

he

in
is-

LOSCHMIDT ECHO AND LYAPUNOV EXPONENT IN A . . . PHYSICAL REVIEW E67, 056217 ~2003!
~4! Lyapunov regime,tL,t,tE* . Combining Eqs.~50!
and~53!, we get an exponential decay of the Loschmidt ec
determined by the classical Lyapunov exponent

M ~ t !;
d

s
S t̃s

tL
D 1/2

e2ct/tL. ~57!

~5! Ballistic diffusion regime,tE* ,t,t tr . This regime
characterized by a power-law behavior of the fidelity is fu
ther subdivided into three subregimes.

~a! tE* ,t,ts2 . Using Eqs.~53! and ~52! and noticing
that S2 is still smaller thans in this time range, we find

M ~ t !;
1

p0s S t tr

t D 1/2

. ~58!

~b! ts2,t,tsuu . The only difference compared to th
previous case is that nowS2.s, yielding

M ~ t !;
1

p0l tr
S t tr

t D 2

. ~59!

~c! tsuu,t,t tr . In this regime fluctuations in the motio
in the parallel direction also become important, see the
around Eq.~54!, with the result

M ~ t !;
s

p0l tr
2 S t tr

t D 4

. ~60!

~6! Conventional diffusion regime,t.t tr . In this regime,
the nature of disorder~short range vs long range! is irrel-
evant, and the result~18! derived in Sec. II is applicable,

M ~ t !;
s

p0l tr
2

t tr

t
. ~61!

We would like to remind the reader that the ordering
relevant time scales in Fig. 7 depends on the microsco
parameters of the problem. We have considered the m
interesting case (l̃ s! l L and d,s, l tr), when all possible
regimes are developed. For other choices of parame
some of the regimes may disappear~see, in particular, Ref
@30#!.

IV. CONCLUSIONS

In this paper, we have studied the Loschmidt echo~or, in
a different terminology, the fidelity!, which characterizes the
sensitivity of a quantum system to an external perturbat
in a model with a weak quantum random potential. Using
diagrammatic approach, we have shown that at short ti
the fidelity decays exponentially with the rate 2/t̃s set by the
golden rule, while its long-time asymptotics is of power-la
type and is determined by the diffusive nature of the dyna
ics on this time scale. For a sufficiently long-range disorde
time range emerges where the diagrammatics becomes
plicable due to merging of two ballistic diffusons into a mo
complicated four-diffuson. To study the fidelity in this re
gime, we have applied a quasiclassical~path-integral! ap-
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proach. This allowed us to express the disorder-average
delity in terms of a solution of a quasiclassical evoluti
equation, see Eqs.~38! and ~39!. On time scales larger tha

t̃s , this equation takes a form of the kinetic equation for t
distribution functiong(f ,r2) of phase-space separations b
tween twoclassical paths ~one of which is subject to the
perturbation!. Solving the kinetic equation, we find sever
additional regimes of behavior of the Loschmidt echo, se
rating the short-time golden-rule decay from the long-tim
diffusive asymptotics. In particular, there arises a ‘‘Lyapun
regime,’’ where the fidelity decays exponentially with a ra
governed by the classical Lyapunov exponent.

Therefore, apart from the short-time golden-rule regim
the behavior of the fidelity turns to be by and large classic
the quantum fidelity~1! follows essentially the classical on
~20!. This quantum-classical correspondence is limited,
the side of very long times, by quantum localization effe
~leading to saturation of quantum fidelity!. Our analytical
findings corroborate numerical results of Ref.@8#, where an
almost identical behavior ofM (t) and M cl(t) for a chaotic
map was observed.

It is worth mentioning that our path-integral calculation
the fidelity is closely connected to the analysis of quant
interference effects in a long-range disorder performed
Refs. @19,23#. In particular, after the Fourier transformatio
r1→f our evolution equation~43! has the same form as th
equation describing the Hikami box in Ref.@19# ~after aver-
aging over the smooth random potential!. This is a remark-
able agreement, since the methods used are essentially
ferent: Aleiner and Larkin@19# work in a given realization of
a random potential@which assumes that the potential is cla
sical, i.e., the condition opposite to Eq.~2! is fulfilled#, while
we consider the case of a diffractive scattering@Eq. ~2!# and
perform all calculations for disorder-averaged quantiti
There is, however, an important difference between the eq
tions obtained. Specifically, in our case the last term of E
~43! ~which is proportional to 1/t̃ tr) is due to the difference
dU between the Hamiltonians for the forward and the ba
ward propagation. On the other hand, the authors of Ref.@19#
add ‘‘by hand’’ a term of exactly the same type~with a cer-
tain time tq replacing ourt̃ tr) for a problem without any
perturbationdU, arguing that it mimics a small-angle dif
fraction in the system. To our opinion, this justification
questionable~at least, for a system with a weak smooth d
order!. Indeed, in this case all scattering processes determ
ing the transport in the system are of diffractive type and
taken into account in our approach. There is thus no freed
to add an additional ‘‘diffractive’’ term to the kinetic equa
tion. We thus believe that the Hikami box is described by
equation without such term@i.e., analogous to our Eqs.~39!

and~43! in the absence of perturbation,dU,t̃ tr
2150] but with

appropriate boundary conditions. While this will probab
not affect the main results of Ref.@19# ~depending only loga-
rithmically on tq), such a more consistent treatment of t
quasiclassical Hikami box@31# would be of conceptual im-
portance for the theory of quantum interference effects
systems with large-scale inhomogeneities. We leave this
sue as an open problem for the future research.
7-9
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