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Loschmidt echo and Lyapunov exponent in a quantum disordered system

Y. Adamov? I. V. Gornyi>** and A. D. Mirlin®2'
Ynstitut fir Nanotechnologie, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
2Institut fir Theorie der Kondensierten Materie, Universitéarlsruhe, 76128 Karlsruhe, Germany
(Received 3 December 2002; published 27 May 2003

We investigate the sensitivity of a disordered system with diffractive scatterers to a weak external pertur-
bation. Specifically, we calculate the fidelil(t) (also called the Loschmidt echaharacterizing a return
probability after a propagation for a timefollowed by a backward propagation governed by a slightly
perturbed Hamiltonian. For short-range scatterers, we perform a diagrammatic calculation showing that the
fidelity decays first exponentially according to the golden rule, and then follows a power law governed by the
diffusive dynamics. For long-range disord@vhen the diffractive scattering is of small-angle charactan
intermediate regime emerges where the diagrammatics is not applicable. Using the path-integral technique, we
derive a kinetic equation and show thilt(t) decays exponentially with a rate governed by the classical
Lyapunov exponent.
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[. INTRODUCTION In the present paper, we study the Loschmidt edhan a

different context, namely, that of guantum-disorderegdys-
Quantum manifestations of the classical chaotic dynamictem. Specifically, we consider a particle moving in a weak
represent a central issue for the field of quantum chaos. Tquantunrandom potential. The word “quantum” means here
characterize quantitatively the stability of quantum motion,that the scattering on this disorder is of diffractive nature.

Pereq1,2] proposed to consider the fidelity For a Gaussian random potential assumed here, this is
equivalent to the condition
M (t)=Kylexp(iH 't)exp( —iHD| )P, D d=l., @

whered is the disorder correlation length ahdis the quan-
tum mean free path. This situation should be contrasted with
the opposite case of a classical disorder, for which the

whereH' differs by a small perturbation from the Hamil-
tonianH of the system under consideration g is some
original state(wave packet The quantityd) is the probabil- disorder-induced contribution to the action on a distarak

ity to return into the stattgy)) after propagation for a time is much larger thar, and the representation of propagators
governed by the Hamiltoniaki followed by a backward in terms of a sum over classical orbies used, e.g., in Ref.
propagation with a slightly perturbed Hamiltoni&h'. Re-  [3]) is justified. On the other hand, the standard theoretical
cently, Jalabert and Pastawdld] argued that for a system tool for the quantum-disorder regime is the impurity diagram
whose classical counterpart is chaotic the fidelity will technique. It is therefore natural to attempt to apply the dia-
decay exponentially with time, with the rate given by the grammatics to the Loschmidt echo problem.
classical Lyapunov exponent. Their work was motivated by We show that indeed the diagrammatic technique can be
measurements of a spin-echo decoherence rate in nucleased to calculate the fidelity for short tim@shere it is given
magnetic resonance experimefdg, and they gave a name simply by the golden-rule formulaas well as for suffi-
“quantum Loschmidt echo” to the overlail). The papef3]  ciently long timegwhere it decays according to a power law
triggered a considerable outbreak of research activity dereflecting the diffusive character of the classical moyiatie
voted to the sensitivity of quantum chaotic systems to exterdemonstrate, however, that for a sufficiently smddibt still
nal perturbations. In a number of subsequent publicationguantum as defined by E®)] disorder an intermediate time
[5-18, the Loschmidt echo was studié¢gredominantly by range emerges, where the diagrammatic method breaks
means of numerical simulationfor a variety of classically down. Using the path-integral approach, we calculate the
chaotic systems and its relation to decoherence problems wasschmidt echo in this regime and find that it does show the
discussed. These numerical works have confirmed the kegecay governed by the classical Lyapunov exponent, which
prediction of Ref[3] that in an appropriate parameter rangeis highly nontrivial in view of the diffractive character of
the decay rate of the Loschmidt echo is governed by thelisorder.
classical Lyapunov exponent. The rest of the paper is organized as follows. In Sec. Il,
we consider the case of a short-range disordet X, where
N\o is the electron wavelengttwhen the diagrammatic cal-
*Also at A.F. loffe Physical-Technical Institute, 194021 St. Pe-culation works in the whole range of times. We identify dia-

tersburg, Russia. grams corresponding to the short-tifgolden-rule and the
TAlso at Petersburg Nuclear Physics Institute, 188350 St. Peterdong-time (diffusion-induced power laywbehavior of the fi-
burg, Russia. delity and evaluate them. Section Ill, which is the central one
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for the paper, is devoted to the case of a long-range random R
potential @>\,) when the scattering is of small-angle char- Y
acter. Our conclusions are summarized in Sec. IV. In particu-
lar, we discuss there a connection between the Loschmidt P
echo problem and a recent activit}9—23 devoted to quan-
tum interference effects in the regime of quantum chaos. A
R
II. LOSCHMIDT ECHO FOR THE SHORT-RANGE 1/’
POTENTIAL
,L/)*

As discussed in Sec. |, we consider a model of the particle ,
moving in a random potential inducing a quantydiffrac- A
tive) scattering. We will assume the limit of an infinite sys-  FiG. 1. Diagram determining the short-tinfgolden-rulé be-
tem size. The Hamiltoniartd andH’ describing the forward  havior of the fidelity.
and the backward propagation in Ed) correspond to two

slightly different potentials where

"2 "2
A_p . "/_p_ ’
A=o—+Us Ar=o—+U, 3

GR*A=fd—E(E—}:|iiO)1eiEt,

2

wherem is a mass of the particle. In this section, we study

the case of a short-range disorder, with the correlation length L E R ,

d<\,, which is essentially equivalent to &-correlated ROA =fﬂ(E—H’ii0)_le_'Et- (8)
(white-noisg random potential. Thus, we have the following

expressions for the correlators: ) _ ) )
The diagrams are then obtained by connecting four lines rep-

resenting the Green’s functions in E,) via the diffusion
3(ri—ry), (4  ladders. At sufficiently short times the leading contribution is
given by the simplest diagram shown in Fig. 1.
where 7 is the mean free timéto simplify notations, we The solid Ilngs in Fig. 1 correspond to the impurity-
assume it to be exactly the same forandU’) and v is a  averaged Green’s functions
density of states at the Fermi energy. The difference between
the potentialssU=U'—U is characterized by another time

(U(rpU(rp))y=(U’(rpuU’(ry))= 2mvT

- ~RA _~RA - -
scaler, CTep)=G (ep) e—ep*+il27’ ©
1 ; —n2 ;
SUr)8U(r)) = —— 8(r—r-). 5 with €p=P /2m, and the shaded box represents the diffuson
(OU(r)oU(ra) = —=3(r1—r2) ® (et P2

Clearly, we want to study the effect of a weak perturbation 1

SU<U or, in the other wordsz> . Finally, we take the II(Q,w)= 5 > —, (10
initial state|y) in the form of a Gaussian wave packet 2mvr(PQ ~iw+1/7)

where D=v37/D is the diffusion coefficient andv,

1 D/4 (2
vir)= ( ,.,02) exp{mo- 502 =po/m. Note that this diffuson has a nonzero “mass’;1/
since it represents an averaged product of two Green’s func-
where o>\ o= 27/p, is a width of the packet an® is a  tions in different potentialéGRGA'>. We will only need this
number of space dimensiorigre setz=1 throughout the diffuson for zero momentunQ and integrated with two

, (6)

papey. Green'’s functions, therefore it is convenient to introduce
To translate(1) into the diagrammatic language, we rep-
resent the ensemble-averaged fidelity as an average product R p+Q/2 e +w/2

of four Green’s functions

n(Q,w) =

M(t):J dry- - drg{y(r)GR(ry,rpt)

pP-Q/2,e—-w/2

X G (1,3 =) * (r3) () GR (r4,r5:1)
23 UL SERE FIG. 2. Dyson equation for the “massive diffuson.” The dashed
XGA(rs,rg; —t)y* (rg)), (7)  line corresponds to the correlattiyU’).
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FIG. 5. Diffuson “collision” vertex (Hikami boX.

The diffuson “collision” vertex, conventionally termed

FIG. 3. Diagram determining the long-time diffusive asymptot- the Hikami box, is given by a sum of diagrams shown in Fig.

ics of M(t). 5, yielding
= dp R( ® ) A,( o )~ B ,:4771/7'2 1 15
- | mpC |72 PO T PO Qe = oy
1

= - (1)  Note the unconventional form of the expression for the
T(—iw+1/7) Hikami box: due to(UU’)#(UU), the diagrams in Fig. 5

do not cancel when all diffuson momenta and frequencies are

equal to zero. Further, we neglected the momentum and fre-

quencies of massless diffusons in ELH); the corresponding

terms will be smaller by a factor/t<1.

To shorten notations, we will also denot@;'R'(e,p)
=#(p)G™F(ep) and Gy™ (ep)=y*(p)G M (ep),

2\D/4 o212
where (p) = (4mo?)Ple™ (P~ pO) is the wave function Combining everything, we thus get the following expres-

in the momentum representation. sion corresponding to the diagram in Fig. 3:
With the above definitions, the expression corresponding

to the diagram Fig. 1 has the form

. :f dpdp’dQ dede’dwldwze_i(wlmz)t
M(t)z dp dede —i(e—€e)t (277)3D (277)4
(27T)D (277)2 Q w Q
GRlp— = e+ 21GA pt J -t
2 XGyl p 2,6+2 G¢p+2,e 2)
X Gl(e.p)T(e—€)G) (¢',p) (12 - ,
XTH(Q,w1) x(Q,e—€")|T'(e—€")[“TI(Q,w)
After a straightforward calculation, we get the following re- =~ Q , W2 o, Q ,
sult for the fidelity: XGy | p'—5.€' =5 |Gy |p'+ 5. e+ o).
> 16
M(t)=e 2"7. (13) (16)
This is nothing but the golden-rule decay induced by the Performing all the energy integrations, we get the following
perturbation(5). sult:
For long timest>7 the contribution(13) becomes expo-
nentially small in view of the massive character of the diffu- dpdp’ dQ —2DQ2% o Q2022 (p—po) 2
sons(10). The long-time behavior of the fidelity is, however, ()= (2 )30 e e 0
determined by a different diagram shown in Fig. 3, with two
massive diffusons*“colliding” and transforming into two con- 2\D
. . . (n!_ 2 2(4770— ) 1
ventional, massless diffusoriBig. 4), x e~ (P'=Po)%er — 1
1 1 (Gp_ 6p/)2+ ?
II(Q,w . 14
Q=2 DQ%iw (49 (17)
P+Q/2e+w/2 Before writing down the final result, we should be more

specific about the widthr of the original wave packet. When
it is large compared to the mean free patt; vy, the char-
acteristic deviationfp—pg|, |p’ — po| are of the order of &
due to Gaussian factors, and we can|pgt|p’| in the last
factor in Eq.(17). In the opposite case<vy7, the differ-
FIG. 4. Dyson equation for the conventional diffusdifQ,»). ~ ence|p|—|p’| is of the order of 1/{y7)<1/c and can be
The dotted line corresponds to the correlaolu)=(U’'U"). neglected in the above Gaussian factors. Thus, we have

H(Q’w) =

\\\\m

A p—Q
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1 W,(p,r)= 2D~ 1?10’ g(p=po)?o? (21

A

= The classical evolution of the coordinate parthg{p,r,t)

i B is described by the diffusion propagator

g (rl_r2)2>

- . P(ry,ro,t)y=———— ex;{—— . (22

# PR (4w 4Dt

Time, ¢

The final momentum distribution is uniform over the mo-
FIG. 6. Schematic representation of the time evolution of thementum direction, while the distribution ¢| is determined

Loschmidt echdV(t) for a white-noise disorder on a log-log plot: by the energy conservation. Thus, we have
A, golden-rule exponential deca$3); B, diffusive power-law de-

cay (18) and(19). 1 2
n (pvrlt):—ex%_—)
2 \DR2 ’ (47Dt)P"2 ADt
M(t)= vor _T(D/2) 20 o>vqT (0-12p(py
210 (pyo)P 1\ 4Dt + 02 ' (47)C-V2 (D7) L
(18) x o0 exf —(|p|—po)?a?],
1 TI'(D/2) | o? (23)

M(t)

D/2
) . o<vgr, (19

- 227 (poo)P 1t where we assumed that the tirhes sufficientAIy IargAe,o2

<Dt. The difference between the HamiltoniddsandH' is
whereI'(x) is the Euler Gamma function. Remarkably, this insignificant for the diffusive dynamics, so that(p,r,t) is
larget behavior of the Loschmidt echo is independentpf ~ given by the same formul@3). Inserting the expressid@3)

2Dt

i.e., of the perturbation strength. for nandn’ into Eq.(20), we get
Therefore, the long-time asymptotic behavior of the fidel-
ity is a power-law decay governed by the diffusion, with M (t):J' n2(pirt) dpdr
M(t) proportional to the inverse diffusion volum¥ g o " (2m)P
=(Dt)P"2. Clearly, this result obtained from the diffuson dia-
gram technique is not specific for the white-noise disorder 1  T(D/2) [ o?\P?
considered in this section but rather yields a generic form of = 22 m(ﬁ , (24

the longt behavior ofM(t) in diffusive systems. Comparing

the resultg18) and(19) with contribution from(13), one can  which is identical to the resuftL9) of the quantum mechani-
determine the time* of crossover between the exponential ca| calculation.
and the power-law regimes, which is larger thaby a loga- The result(19) differs from Eg. (24) by the prefactor
rithmic factor. In particular, for a two-dimensional systemuvqr/o. This can be understood if we take into account that
with o<1, we havet* = (7/2)In(pyD7/ ). The behavior of for o>I=v7 the width of the distribution ofp| is deter-
M(t) for the case of a short-range potential studied in thigmined by the quantum uncertainty of the momentdfp|
section is illustrated schematically in Fig. 6. ~I~* rather than byr~* as in the classical formule3).

We will now show that the resultl9) can be obtained We see that the long-time behavior of the classied)
from classical arguments. Let us consider the classical fideRnd quantuntl) fidelity is essentially the same. This agrees
ity introduced in Refs[8,13,15,17and defined as an overlap With the results of numerical study of a quantum chaotic

of two classical phase-space distribution functions system(the sawtooth mapin Ref. [8].
In low-dimensional systemd$)=<2, the behavior of the

P quantum fidelity is affected at very long times by the quan-
. (200  tum localization effectswhich have been neglected in our
2m)° considerations These effects will lead to a saturation of the
_ S _ ] quantum fidelity at the timet|oc~Lﬁ,C/D, wherelL,. is a
Here,n(p,r,t) is a distribution function obtained from the |ocajization length. Specifically, for a quasi-one-dimensional
initial distributionn(p,r,0) by the action of the classAlcaI evo- system t,,.~»?D and for a two-dimensional systef,.
lution operator corresponding to the Hamiltoni&h and — _ _o47%D.
n’(p,r.t) is obtained by the evolution operator correspond- |t js worth mentioning that our diagrammatic calculation
ing to the slightly perturbed Hamiltoniad". This quantity  bears a certain similarity to earlier studies of intensity fluc-
indeed possesses the properties of fidelity if the initial distrituations and correlations for waves propagating in random
bution is derived from a Wigner functioW,, of a pure quan- media[24—-26§. In particular, sensitivity of transport quanti-
tum mechanical staten(p,r,0)=W,(p,r,0), implying, in ties to a small change of the impurity potenfielg., due to a
particular,M 4(0)= fn?(p,r,0)dpdr/(27)P=1. For the ini-  displacement of a single-scattering cehteas been investi-
tial state(6), the corresponding Wigner function is gated[27,24]. However, the Loschmidt echo is essentially

dpdr

Mcu(t)=f n(p,r,t>n’(p,r,t)(
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different from the quantities studied in these papers since iéquation corresponding to the sum of the ladder diagrams

involves propagation in two different potentidls U’ al-  [28]. Furthermore, even in the ballistic range of frequency
ready before the ensemble averaging. Formally, this correand momentayl,>1, wr,>1, the average product of two
sponds to switching between the Green'’s functiGrendG’ Green'’s functiongGgG,) is determined by a sum of ladder
in external verticegsee Figs. 1 and)3 diagrams, the “ballistic diffuson.” One might thus expect
that the diagrammatic calculation of the preceding section
I1l. LOSCHMIDT ECHO FOR THE LONG-RANGE can be generalized to the case of a long-range disorder. In-
POTENTIAL deed, both the golden-rule short-time behavior corresponding

) ) ~ to Fig. 1 and the long-time diffusion power-law asymptotics

After having understood the behavior of the fidelity in a getermined by the diagram of Fig. 3 do retain their validity
white-noise disorder, we turn to the case of our main interesfg, 5 long-range disorder. However, as we demonstrate be-
a long-range potential with a correlation lengtk-No. FOr oy, an intermediate time range emerges, where the diagram-
this kind of potential, the characteristic angle of diffraction matic approach is not applicable. The reason for this is a
for each scattering event is smadig~\o/d, so that many npecessity to average a product of four Green’s functions de-
scattering events are needed to change strongly the velocitribing four electronic trajectories propagating close to each
direction. As a result, the motion in such a disorder is charpther. As was shown in Ref23], in a certain time range
acterized by two relaxation times. The first one is the quan¢specified below these four Green's functions do not de-
tum (or, in another terminology, single-parti¢gleelaxation  couple into two(ballistic) diffusons, but rather are coupled
time 75, which is the mean time between scattering eventsy|| together by impurity correlators into a more complicated
This time determines the decay rate of the averaged Greengpject, a “four-diffuson.” In view of the failure of the
function (GR(r,t))=Gg(r,t)e”"#s. The second one, the pallistic-diffuson diagrammatics, we will use the path-
momentum(or, transport relaxation timer, sets the time integral approach developed in Reff29,23. For simplicity,
scale on which the velocity direction changes by an angle ofve consider a two-dimensional system.
the order ofr. It is parametrically largers,~ (d/\g)?7s. We begin by defining the disorder correlation functions
The transport time determines, in particular, the diffusion[replacing the white-noise formuldd) and(5)]
coefficientD=v37,/D. , ,

The condition(2) implies that in the diagrammatic ap- (UNU(ry))=(U"(NU’(r))=W([r—ra),
proach the leading contribution is given by diagrams with (8U(r)8U(ry))=26W(|r—r) (25)
noncrossing impurity lines. In particular, is determined by ! H
the Born-approximation self-energy diagram, is obtained Introducing the Feynman path-integral representation and
by taking into account the ladder-type vertex correction, andaveraging over the disorder, we rewrite the product of four
the diffusion propagator can be calculated by solving theGreen’s functions in Eq(7) as

<GR(R1!R2|T)GA’(R2!R31_T)GR'(R41R5!T)GA(R5!R6!_T)>

ri(T)=Ry [r3(T)=R3 (ro(T)=Rg [r4(T)=Rg 4 )
= f f f f I1 Dr; exdiSn—Swl. (26)
r r r r

1(0)=Ry Jr3(0)=Ry Jry(0)=Ry Jry(0)=Rg5 i=1

Mt 2 2 2 5
Skinzifo dt(ri+ri—r3z—ry),
1
S\NZE (S11+ Spot Szzt Sya) + S12+ S34— S13— S14— So3— Spa— 9S15— 3Sgut S5+ 654,
T[T
SijZJ’O Jo W(ri(t)—r;(t"))dtdt’,

T(T , ,
3= [ [ oo - ry patat, @7

where the paths;,r, correspond to the retarded angr, to the advanced Green’s functions. The path inte@®)l is similar
to the one evaluated in Rdi23], a difference being in boundary conditions and in the additional tef8sin the action
induced by the perturbatiodU. As in Ref.[23], it is useful to perform the change of variables, introduditg=(r;+r,
+ratr)/4, Ro=(r{+ro—r3—ry), ry=(r1—rot+rz3—ryu)/2, r _=(ri—r,—rs+r,)/2. The boundary conditions in terms of
the new variables are as follows. &t T, we haveR_(T)=0 andr _(T) =0, while the integration oveR  (T) andr . (T) are
unrestricted. At=0 the integration oveR-(0) andr_(0) is performed with the weight
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W(R1) ¥* (R3) (Ry) ™ (Rg) =

1 )2 p{ 4R, (0)2+R%(0)/4+r1,(0)2+r_(0)?
F expy —

S +i pOR(O)] . (28)

The kinetic part of the action reads in the transformed vari- wdx g2
ables as G(Y)EJ — ——WI(X,y),
0 Vo dy
de rr +R.F 29 dx ¢2
n=m t(ror_+RLR.). *
Skin . (ry +RO) (29 5G(y)= ) U_OWZ&N(X,y)_ (35)

As was shown in Ref.23], the pairs of variablesR; ,R_)  gjnce the correlation function&/(r), SW(r) decay on the
and . ,r_) decouple. On ballistic distancesl, the inte-  gcgleq, the functionsF, G, 6F, and 6G have the following
gral over the first pair is essentially of the free-particle Wpe’asymptotic behavior: F(y<d)=—G(0)y%2, F(y>d)

and its saddle-point yields the classical equation of motior_ =1 G(0)= _mzvngtr and G(y>d)—0 ’ and analo-

for the “center of " coordinat®., , s ~
or fne “cenier of mass- coordinat=.« gously 6F (y<d)=— G(0)y/2, oF(y>d)=75 1, 6G(0)

t =—m?v3/7,, 6G(y>d)—0. Here, the times, and r,, are
R(=R+(0)+[R+(T)=R.(0)]5. (B0 defined according to
After integrating outR, ,R_, the action(29) is reduced to iz E fo(r)dr, (36)
the form Ts Vo Jo
R, (T)—R.(0) fT o 1 1 (=dr dWr)
Sin=m———57——[R-(T)=R_(0)]+m Odtr+r,. Eaa 702 o - 4 (37)

31
3y As shown in Ref[29], these are exactly the expressions for
Since we are interested in the ballistic scaled ), it is the single particle and the transport times in a long-range
convenient to splitR_,r..,r_ into components paralldl  disorder. The times, and7, are defined by the equations
and perpendicular to the direction of the motioR . . Then  analogous to Eqs.36) and (37) but with a substitutionV
the disorder-induced part of the acti®y, depends only on — SW.

the transverse componen®&_ ; andr., , which we will Taking into account the boundary conditiof®8) and in-
denoteY_ andp. , respectively, tegrating out the variable®.. , we get the following expres-
sion for the fidelity:

T
S\N:f U(p_(1),p,(1))dt

0 M(T):f Mef (p%+92+)’2”2g(p+,p,;T),

T V2ma?
~2[ 00 (0{G( (1)~ 960 (1)+G(p. (1)) 38)

The functiong entering(38) is determined by the .. part of
(32 the path integral, which can be reduced in the standard way
to a differential equation:

g i &
Jdt madpdp_

where

U=Uy+ U, +U(p+ ,p))g(m - 1)=08(t)(p-).

(39

Uy=2[F +F(p_)]-F(ps+p_)—F(pi—p_),
o= 2R ) HFlp ImFee o )= om0 The left-hand-side of this equation reduces to that of(Bf).
SU=—28F(p_)+6F(p.+p_)+6F(p,—p_), (33  inRef.[23]if the forward and backward evolution are per-
formed in the same potentiaf{/= 0 (the right-hand-side dif-
and we have introduced the functions fers from Ref. [23] because of different boundary condi-
tions). The presence oBU/ [which enters the “potential
odx energy” U, see Eq(33)] in Eq. (39) is crucially important:
F(Y)Ef 5 [W(x,0=W(x,y)], otherwise the solution would be simplg(p. ,p_,t)
070 =d(p_) for anyt>0, since the boundary condition in Eqg.
dx (39) is independent op ;. andiy(p,,0)=0. After a substi-
5F(Y)Ef [ 8W(x,00— SW(X,y)], (34)  tution into Eq.(38), this would lead toM(t) =1, which is
0 Vo the correct result in the absence of perturbation.
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We have therefore reduced the problem of calculation oRemarkably, Eq(46) has a meaning of the Boltzmann ki-
the Loschmidt echo in the ballistic time range to a solution ofnetic equation for the phase-space distribution function de-
the kinetic equatiori39). Let us consider the time evolution scribing the motion in the transverse direction characterized

of the solution of Eq.(39). The initial value att—0 is g

by the coordinate _ , with vy¢ playing the role of the cor-

=8(p_), and as explained above, the time evolution is ini-responding velocity. This clarifies the meaning ¢f (and

tially determined by the ternd/ that induces g, depen-
dence of the solution. As a result, the distributgphecomes
quickly suppressed at, =d because

2
&{(p-%—vo):'v_l P+>d (40)
Ts
Thus, forp,>d Eg. (39) reduces to
d 2
59t=9=0, (41)
Ts
which gives an exponential decay
o(p-), p+<d “2
oo re s pixd.

Therefore, fort>7, the functiong remains essentially non-

vanishing only in the regiop, ,p_<d. In this region, we
can expand/ up to the leading terms ip, and p_ and
rewrite Eqg.(39) in the form

o i & m? 2m%f 6. (43
Pl ~—p,3|9=0.
ot map,dp_ 3 Tir i

We have introduced here a time scale

T .=

3 Jocdr d(1dwrn)] ™
m o r drlr dr

d 2/3
~ Ty K .
r

(44)

As discussed belows, is equal(up to a numerical coeffi-

cien to the inverse Lyapunov exponent in the corresponding

classical problem, and we will call it the Lyapunov time.

At the early stage of the evolution, characteristic values of

p_ are small, and the? p2
pared to thep?

term in Eq.(43) is small com-
term. More specifically, at~75, we have

p_~1s/(pod), so that the condition for neglecting the quar-

tic term in this time range i§, >1, wherel_ =v,7_ is the

Lyapunov length. We will assume in the sequel that this con-

dition is fulfilled [30]. Thus, Eq.(39) reduces to

Jd i (92 2m UO 2
—_— = +—= g=0.
Jat madpdp_ Ty

(45)

Performing further a Fourier transformationp,
—i(mvo) " talap, dldp,—imugep, we cast Eq.(39) into
the following form:
(9 J

tvop—— (46)

2 9 0
op. = 942|970

7y 0P

explains the notation it is the angle the velocity vector
makes with thd| axis. (We remind the reader that we are
considering ballistic time scales, so that1.) The last
term in Eq.(46) plays the role of a collision integral and
describes a diffusion process for the velocity angle. The so-
lution of this equation is a Gaussian packet

V37 o 3dp- 3p? g2 E
2 vol  (vot)? 2t|°
Transforming back to the variabje, , we get

1 2 p? _
exp{_p__p_;r+2i\/§§+P ]

g(¢,p- )—

Ot

R (SR R
where
. (t)_2v0t<2t)l/2
) V3 \7)
~ \1/2
Tir
2= (Zt) : (47)

For the phase-space distribution functigie,p_,) the
quantitiesY, _ and3 ;! play the role of widths of the distri-
bution with respect to the coordingte and the momentum
Moy, respectively.

To simplify calculations, we will neglect the cross corre-
lations betweerp, and p_ [this will only influence a nu-
merical prefactor inM(t), which is of minor importance
herg and assume thaf has the form

1
Pl ——— —— . 48
9(p+.p-) = EXD{ 52 23} (48)

We will see that this form ofg will preserve during the
further evolution of the distribution.

The characteristic values pf are increasing proportion-
ally to t¥2. Eventually, the neglected thir@uartio term in
Eq. (43) becomes comparable to the fourth one. Using the
result (47) for the characteristic valu& _(t) of p_, it is
easy to see that this happenstatr . At t>7_the fourth
term dominates, and E¢43) takes the form

g i 92 m?

2 2

ST —— T pip
L

. map,dp_ 9=0.

(49)

After the Fourier transformation from, to ¢, the last term
takes the form— (p2/v27d)d%gldp? and describes a diffu-
sion process for the angle with the diffusion coefficient
proportional to to the coordinatp_. This is exactly the
kinetic equation for the disorder-averaged distribution func-
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tion g(¢,p_) of phase-space separations between two clas- 1 23 4 52 5b 5 6
sical pathd19,23. It leads to an exponential increase of the : : ' - T' T' T' |
width of the distribution functiomy(p_ , ¢) with a rate given oo TE T Tl T
by the Lyapunov exponent 7 *. Thus, in this Lyapunov FIG. 7. Characteristic time scales separating various regimes of
regime, we have the behavior of M(t). The regimes 2(golden rul¢ and 4
(Lyapunoy correspond to an exponential decay M{t), the re-
7 12 t maining regimes to a power-law decésee text for details
S _(O)=vor | = exp[cT—],
T - T minz . (T),0) 53
s 1 ‘ ()= maxZ _(T),0)’
E+(t)2)\o(£) exp[—c—], (50 N ) L
L L Thus, two additional time scales may become significant

when we consider the fidelityr,, , which is defined by

3 . (7,4+)=0 andr,_ defined byX _(7,_)=o. Position of

_ it ) AILED ’ - these time scales with respect to main characteristic times
—i(mug) “d/d¢ into a kinetic equation for the classical (¢ .y depends on the width of the initial state. As
d_|str_|but|on functlon,.m a long-range potential the classmalan example, we choost< o<l . In this casey . <o for
fidelity (20) behaves in the same way as the quantum one for

> Let hasi highl wrivial ch ter of th all timest>7,, so that the scale,, does not arise, and
= . .

7s. LELUS emphasiz€ a highly nontrivial character o er’E‘<7-U,<7-tr. The order of all characteristic scales on the
emergence of a classical kinetic equation. Indeed, we CON e axis is illustrated in Fig. 7

Sll?;r:tir;?ggforg::t?\?;)e ?12?:1rfgravr\llglf:gr?r?gthbsecztéi::‘:}ge?jC'{c:Zs?sfi? We mention for completeness that there is one more char-
q cteristic timer,,| located between, _ andr, . At this time,

cally. It is only after the disorder averaging that the classica he approximation(30) of straight motion in the coordinate

kinetics is restored. . o . .
. . R, loses its validity. This leads to an additional factor
The Lyapunov regime breaks down when the width o/maxo,3} in the expression foM (t), where

reaches the correlation lengthi.e., at

wherec is a numerical coefficient of the order of unity.
Since Eq. (43) turns after the Fourier transform .,

~ t
e = (7 /e)In(7y/ 7). (51) S=vt— (54)
tr
This time plays a role analogous to the Ehrenfest time but ) o ) )
only depends on classical paramet@fsne assumes that the characterizes longitudinal fluctuations f, . There is thus
perturbationsU is independent of). An analogous expres- an additional crossover inside the ballistic-diagrammatics re-
sion for the crossover time between the Lyapunov regimd@ime, which takes place at a time satisfying (7,
and the power-law regim@liscussed beloywvas obtained in =9 . )
Ref.[13] for the classical fidelity in a different modésaw- We are now prepared to summarize the results of this
tooth map. section and to give a list of all the regimes of behavior of the
Whent> 7% , so thatp_>d, we can use another asymp- fidelity. We have found as much as six essentially different

tote of the “potential’(p.. .p_ = 2m%202 /7. . This rggim_es(as iII_ustrateq in Fig. ¥ one of _them(tht_a baII_istic
P (P )l »o VP +!Tu diffusion) splits up into three subregimes with different

leads to an equation very similar to E@5) but with 7, power-law behavior. We list the regimes in the order they
replaced byr, . Therefore, in analogy with E¢47), we have  appear as the time increases.

again a power-law dependence of the distribution widths, (1) Perfect echo regime;<7.. At such short times the

[\ u2 perturbation is essentially irrelevant, aint(t)=1.
E_(t)=vot<—) , (2) Golden-rule regimet<7dn(o/d). Substituting Eq.
Tr (42) into Eq. (38), we get the exponential decay

1/2 -
2+(t):>\0(%) | 52 M(t)=e 27, (55

_ . _ (3) Power-law “pre-Lyapunov inflation” regime,

For times I_arger tha.nE all the c_alculatlo_ns can a'so_b? per- “7dn(o/d)<t<7 . Substituting Eq(47) into Eq. (53), we get
formed using the diagrammatic technique for ballistic sys-
tems. This is because four trajectories, which were coupled ~\ 12
all together into a four-diffuson by disorder correlations in M(t)~g(5> . (56)
the Lyapunov regime, split now in two conventional ballistic o\t
diffusons separated by a distanea [19,23.

Having obtained the solutiog of the kinetic equation in  This behavior of the fidelity is related to a power-law spread-
all the regimes of interest, we can calculate the fide¥tft). ing of classical trajectories in this regime due to the ballistic
Substituting Eq(48) into Eq. (38), we get diffusion in the perturbation potentiadU.
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(4) Lyapunov regime,r, <t<rg . Combining Eqs(50)  proach. This allowed us to express the disorder-averaged fi-
and(53), we get an exponential decay of the Loschmidt echadelity in terms of a solution of a quasiclassical evolution

determined by the classical Lyapunov exponent equation, see Eq$38) and(39). On time scales larger than
~ 12 7, this equation takes a form of the kinetic equation for the
M (t)~ 9 E) e cUr (57) distribution funct_iong(qs‘p_) of phase-_spa_ce separations be-

o\TL tween two classical paths (one of which is subject to the

perturbation. Solving the kinetic equation, we find several
additional regimes of behavior of the Loschmidt echo, sepa-
rating the short-time golden-rule decay from the long-time
. . diffusive asymptotics. In particular, there arises a “Lyapunov
(@) re<t<7,_. Using Egs.(53) and (52) and noticing  aqime » where the fidelity decays exponentially with a rate
thatX _ is still smaller thano in this time range, we find governed by the classical Lyapunov exponent.
12 Therefore, apart from the short-time golden-rule regime,
(58  the behavior of the fidelity turns to be by and large classical,
the quantum fidelity(1) follows essentially the classical one
(20). This quantum-classical correspondence is limited, on
the side of very long times, by quantum localization effects
(leading to saturation of quantum fidelityOur analytical
2 findings corroborate numerical results of Rdf], where an
| ) : (590  almost identical behavior dfi(t) and M (t) for a chaotic
Polr map was observed.
() 74 <t<ry. In this regime fluctuations in the motion It is worth mentioning that our path-integral calculation of

in the parallel direction also become important, see the texhe fidelity is closely connected to the analysis of quantum
around Eq(54), with the result interference effects in a long-range disorder performed in

Refs.[19,23. In particular, after the Fourier transformation

(5) Ballistic diffusion regime, g <t<r,. This regime
characterized by a power-law behavior of the fidelity is fur-
ther subdivided into three subregimes.

M 1 Tir
e | T

(b) 7, <t<74. The only difference compared to the
previous case is that nol_> ¢, yielding

T
t

M (t)~

A p.— ¢ our evolution equatiof43) has the same form as the
M(t)~— T) : (600  equation describing the Hikami box in R¢1.9] (after aver-
Pol aging over the smooth random potentidrhis is a remark-

able agreement, since the methods used are essentially dif-
ferent: Aleiner and Larkif19] work in a given realization of

a random potentiglwhich assumes that the potential is clas-
sical, i.e., the condition opposite to B®) is fulfilled], while

(6) Conventional diffusion regime> 7. In this regime,
the nature of disorde¢short range vs long ranges irrel-
evant, and the resu(il8) derived in Sec. Il is applicable,

o Ty we consider the case of a diffractive scatterjg. (2)] and
M(t)~ TR (61)  perform all calculations for disorder-averaged quantities.
Polir There is, however, an important difference between the equa-

We would like to remind the reader that the ordering 0ft|ons obtained. Specifically, in our case the last term of Eq.

relevant time scales in Fig. 7 depends on the microscopi*3 (Which is proportional to Hy) is due to the difference

interesting caseT(<l, and d<o<I,), when all possible ward propagation. On the other hand, the authors of [Réf.

regimes are developed. For other choices of parametergl,d.d by hand” a term of exactly the same typaith a cer-

some of the regimes may disappésee, in particular, Ref. tain time 74 replacing ourry) for a problem without any
[30]). perturbationsU, arguing that it mimics a small-angle dif-

fraction in the system. To our opinion, this justification is
guestionabldat least, for a system with a weak smooth dis-
ordep. Indeed, in this case all scattering processes determin-
In this paper, we have studied the Loschmidt e@hp in ing the transport in the system are of diffractive type and are
a different terminology, the fideliy which characterizes the taken into account in our approach. There is thus no freedom
sensitivity of a quantum system to an external perturbationto add an additional “diffractive” term to the kinetic equa-
in a model with a weak quantum random potential. Using theion. We thus believe that the Hikami box is described by an
diagrammatic approach, we have shown that at short timesquation without such terfi.e., analogous to our Eq§39)

the fidelity decays exponentially with the rater2éet by the  and(43) in the absence of perturbatioﬁi{{}; 1=0] but with
golden rule, while its long-time asymptotics is of power-law appropriate boundary conditions. While this will probably
type and is determined by the diffusive nature of the dynamnot affect the main results of RéfL9] (depending only loga-

ics on this time scale. For a sufficiently long-range disorder aithmically on 7;), such a more consistent treatment of the
time range emerges where the diagrammatics becomes inaguasiclassical Hikami bok31] would be of conceptual im-
plicable due to merging of two ballistic diffusons into a more portance for the theory of quantum interference effects in
complicated four-diffuson. To study the fidelity in this re- systems with large-scale inhomogeneities. We leave this is-
gime, we have applied a quasiclassi¢path-integral ap-  sue as an open problem for the future research.

IV. CONCLUSIONS
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